6,338 research outputs found

    The fate of failed renal homografts retained after retransplantation

    Get PDF
    The fate of nonfunctioning or poorly functioning renal homografts which were left in situ at retransplantation was studied in 28 patients. In one recipient, lethal septicemia developed secondary to necrosis as well as infection of a retained intraabdominal graft. In three other patients, subsequent symptoms developed from retained extraperitoneal pelvic grafts, and these kidneys were removed without complication. It is suggested that grafts placed extraperitoneally can be left in place if retransplantation becomes necessary, provided that there is careful follow up study for signs of necrosis or infection. Removal of the kidney graft then may be performed electively at a later time, or this may never become necessary in a significant number of patients

    Global Linear Complexity Analysis of Filter Keystream Generators

    Full text link
    An efficient algorithm for computing lower bounds on the global linear complexity of nonlinearly filtered PN-sequences is presented. The technique here developed is based exclusively on the realization of bit wise logic operations, which makes it appropriate for both software simulation and hardware implementation. The present algorithm can be applied to any arbitrary nonlinear function with a unique term of maximum order. Thus, the extent of its application for different types of filter generators is quite broad. Furthermore, emphasis is on the large lower bounds obtained that confirm the exponential growth of the global linear complexity for the class of nonlinearly filtered sequences

    The self-consistent quantum-electrostatic problem in strongly non-linear regime

    Full text link
    The self-consistent quantum-electrostatic (also known as Poisson-Schr\"odinger) problem is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. We present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. We illustrate our approach with (i) a calculation of the compressible and incompressible stripes in the integer quantum Hall regime and (ii) a calculation of the differential conductance of a quantum point contact geometry. Our technique provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.Comment: 28 pages. 14 figures. Added solution to a potential failure mode of the algorith

    Nutrition In The South

    Get PDF
    The most serious nutritional problem with which southern veterinarians have long had to contend is simply the failure of southern farmers and stockmen to supply enough feed. There is nothing scientific or spectacular about such a conclusion, but the client and his livestock can be benefited far more if he can be made to understand the real cause of his trouble. True, it may sound more impressive to the client to speak of deficiencies of phosphorus, cobalt, iron, copper, or calcium, and there are areas in which they do exist. Fortunately though, nutrition in general has improved materially on southern farms during the past decade

    Verifiable Elections That Scale for Free

    Get PDF
    In order to guarantee a fair and transparent voting process, electronic voting schemes must be verifiable. Most of the time, however, it is important that elections also be anonymous. The notion of a verifiable shuffle describes how to satisfy both properties at the same time: ballots are submitted to a public bulletin board in encrypted form, verifiably shuffled by several mix servers (thus guaranteeing anonymity), and then verifiably decrypted by an appropriate threshold decryption mechanism. To guarantee transparency, the intermediate shuffles and decryption results, together with proofs of their correctness, are posted on the bulletin board throughout this process. In this paper, we present a verifiable shuffle and threshold decryption scheme in which, for security parameter k, L voters, M mix servers, and N decryption servers, the proof that the end tally corresponds to the original encrypted ballots is only O(k(L + M + N)) bits long. Previous verifiable shuffle constructions had proofs of size O(kLM + kLN), which, for elections with thousands of voters, mix servers, and decryption servers, meant that verifying an election on an ordinary computer in a reasonable amount of time was out of the question. The linchpin of each construction is a controlled-malleable proof (cm-NIZK), which allows each server, in turn, to take a current set of ciphertexts and a proof that the computation done by other servers has proceeded correctly so far. After shuffling or partially decrypting these ciphertexts, the server can also update the proof of correctness, obtaining as a result a cumulative proof that the computation is correct so far. In order to verify the end result, it is therefore sufficient to verify just the proof produced by the last server

    Theory of the topological Anderson insulator

    Get PDF
    We present an effective medium theory that explains the disorder-induced transition into a phase of quantized conductance, discovered in computer simulations of HgTe quantum wells. It is the combination of a random potential and quadratic corrections proportional to p^2 sigma_z to the Dirac Hamiltonian that can drive an ordinary band insulator into a topological insulator (having an inverted band gap). We calculate the location of the phase boundary at weak disorder and show that it corresponds to the crossing of a band edge rather than a mobility edge. Our mechanism for the formation of a topological Anderson insulator is generic, and would apply as well to three-dimensional semiconductors with strong spin-orbit coupling.Comment: 4 pages, 3 figures (updated figures, calculated DOS
    corecore